An Optimal $O(\log \log N)$-Time Parallel Algorithm for Detecting all Squares in a String

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal O(log log N)-Time Parallel Algorithm for Detecting All Squares in a String

An optimal O(loglogn) time concurrent-read concurrent-write parallel algorithm for detecting all squares in a string is presented. A tight lower bound shows that over general alphabets this is the fastest possible optimal algorithm. When p processors are available the bounds become 0(fnl;gnl +loglogrl+p/n12p).

متن کامل

An Optimal O(log log n) Time Parallel String Matching Algorithm

An optimalO(log log n) time parallel algorithm for string matching on CRCWPRAM is presented. It improves previous results of [G] and [V].

متن کامل

An O(n log log n/ log n) Time Algorithm for the All-Pairs Shortest Path Problem

We design a faster algorithm for the all-pairs shortest path problem under the conventional RAM model, based on distance matrix multiplication (DMM). Specifically we improve the best known time complexity of O(n(log log n)/ logn) to O(n log log n/ log n). As an application, we show the k-maximum subarray problem can be solved in O(kn log log n/ log n) time for small k.

متن کامل

An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon

Given a simple n-vertex polygon, the triangulation problem is to partition the interior of the polygon into n-2 triangles by adding n-3 nonintersecting diagonals. We propose an O(n log logn)-time algorithm for this problem, improving on the previously best bound of O (n log n) and showing that triangu-lation is not as hard as sorting. Improved algorithms for several other computational geometry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 1996

ISSN: 0097-5397,1095-7111

DOI: 10.1137/s0097539793260404